
Prof. Albert C.J. Luo
Southern Illinois University Edwardsville, Department of Mechanical and Mechatronics Engineering School of Engineering, USA
Speech Title: Limit Cycles and Homoclinic Networks in 2-dimensional Polynomial Systems
Abstract:
In this paper, the properties of equilibriums in planar polynomial dynamical systems are studied. The homoclinic networks of sources, sinks, and saddles in self-univariate polynomial systems are discussed, and the numbers of sources, sinks, and saddles are determined through a theorem, and the first integral manifolds are determined. The corresponding proof of the theorem is completed, and a few illustrations of networks for source, sinks, and saddles are presented for a better understanding of the homoclinic networks. Such homoclinic networks are without any centers even if the networks are separated by the homoclinic orbits. The homoclinic networks of positive and negative saddles with clockwise and counterclockwise limit cycles in crossing-univariate polynomial systems are studied secondly, and the numbers of saddles and centers are determined through a theorem, and the first integral manifolds are determined through polynomial functions. The corresponding proof of the theorem is given, and a few illustrations of networks of saddles and centers are given to show the corresponding geometric structures. Such homoclinic networks of saddles and centers are without any sources and sinks. Since the maximum equilibriums for such two types of planar polynomial systems with the same degrees are discussed, the maximum centers and saddles should be obtained, and maximum sinks, sources, and saddles should be achieved. This paper may provide a different way to determine limit cycles in the Hilbert 16th problem.
Biography:
Professor Luo has worked at Southern Illinois University Edwardsville. For over 30 years, Dr. Luo’s contributions on nonlinear dynamical systems and mechanics lie in (i) the local singularity theory for discontinuous dynamical systems, (ii) Dynamical systems synchronization, (iii) Analytical solutions of periodic and chaotic motions in nonlinear dynamical systems, (iv) The theory for stochastic and resonant layer in nonlinear Hamiltonian systems, (v) The full nonlinear theory for a deformable body. Such contributions have been scattered into 50 monographs and over 400 peer-reviewed journal and conference papers. Dr. Luo served editors for the Journal “Communications in Nonlinear Science and Numerical simulation” for 14 years, book series on Nonlinear Physical Science (HEP) and Nonlinear Systems and Complexity (Springer). Dr. Luo is the editorial member for two journals (i.e., IMeCh E Part K Journal of Multibody Dynamics and Journal of Vibration and Control). He also organized over 40 international symposiums and conferences on Dynamics and Control.